留言
报告导航:研究报告制造业汽车
2018年车路协同与V2X产业发展研究报告
字数:0.0万 页数:165 图表数:0
中文电子版:8000元 中文纸版:6400元 中文(电子+纸)版:8500元
英文电子版:2500美元 英文纸版:2700美元 英文(电子+纸)版:2800美元
编号:ZJF123 发布日期:2018-11 附件:下载

         自动驾驶融合了众多行业的新兴技术,并且在不断涌现出新的技术、产品和方案组合。过去一年,C-V2X和车路协同无疑是发展最快,最受重视的技术之一。

        完成《2018车路协同与V2X产业研究报告》,作为一家完整经历过手机产业智能化进程的研究机构,我们不禁想起PDA和手机产业的发展历程。

        在iPhone到来之前,是各种PDA和PDA手机的混战。起初最受追捧的公司叫Palm,无数发烧友争相抢购新机,自发写评测报告,组织胖友会交流(Palm粉丝又叫胖友),如同今天特斯拉所受的拥戴。

        那时,还有很多自研操作系统的企业,以及开放API的PDA&手机企业(如诺基亚),后来都没了踪影。如今,一些主机厂也在自研操作系统,或者开放软硬件接口。前仆后继的造车新势力,像极了当年一窝蜂的山寨手机企业。历史总是惊人的相似。

        当然,汽车产业和手机产业有极大的不同,十倍以上的产业规模,十倍以上的复杂度,不能完全类比。

        有了苹果APPSTORE模式,有了2.5G/3G/4G无线数据网络的建立,有了智能手机操作系统的统一(从几十家减少到2-3家),才有了后来移动互联网的繁荣,应用和服务兴起。智能汽车产业很可能会重复这一历程。
从IT圈来做汽车的人,起初嘲笑汽车行业还处于IT原始社会,做汽车的如此因循守旧,如此效率低下。汽车最智能网联化的部分——车机与手机相比,落后了好几代。

        事实表明,汽车的智能网联化还没有规模化启动,只是因为芯片算力、网络传输、基础设施等等都还没有达到汽车行业的基本要求。

单车智能顶多是一个智商高、情商低的学霸

        单车智能的发展表明,单向去预测其他道路使用者的意图,如同一个智商高、情商低的学霸,在学校里混(简单交通场景)没问题,到社会上(混合交通场景)则到处碰壁。

        如果人在驾驶车辆,经过一个没有交通信号灯的十字路口时,司机可以通过眼神、手势与行人做交流,大家彼此明白意图,知道谁获得相应的路权。但自动驾驶车辆虽然有传感器,却没有办法通过传感器来实现意图的交流。

        交通的环境本身也是非常复杂多变的,尤其是在中国在混合交通流的时候有各种各样的场景,目前的自动驾驶车辆还远远不能遍历足够多的场景,在这种情况下单车智能商业化面临的风险非常之大。

        要想情商高,则需要善于与其他交通参与者沟通,与环境互动。车路协同和V2X因此变得异常重要。

车路协同的优势

        车路协同系统 ( cooperative vehicle-infra structure system, CVIS) 是基于无线通信、 传感探测等技术获取车辆和道路信息, 通过车车、 车路通信进行交互和共享, 实现车辆和基础设施之间智能协同与配合, 达到优化利用系统资源、 提高道路交通安全、 缓解交通拥堵的目标,是智能交通系统(ITS)的最新发展方向。

车路协同与V2X行业.png

        车路协同是一种交互,这种交互能够让交通的参与方的意图得到非常精准的诠释,不会只是靠猜测这辆车要发生什么样的行为,而是能够准确的知道,因此可做出准确的判断。

        除了交互能力,车路协同还能大大增强自动驾驶车辆的感知能力。视觉、毫米波、激光雷达等传感器除了装在车上,还可以装在路灯杆上;路灯杆也进化为多合一信号杆、多合一交通杆、多合一电警杆等。车端路端同时感知,则盲区最大化减少,视野之外的碰撞提前告知。

        路端能够为自动驾驶车辆提供足够的决策依据甚至指令,自动驾驶车辆本身发展的复杂度也会大大降低,成本也会大大降低。因为它不需要遍历所有的场景,自动驾驶商业化也可以提前到来。

        除了车端和路端的感知和通讯设施,交通部门也在规划对道路本身进行智能化改造,以适应自动驾驶的需要。

        2018年2月,交通运输部发布了《交通运输部办公厅关于加快推进新一代国家交通控制网和智慧公路试点的通知》,提出重点发展交通控制网和智慧公路。主要包括:(一)基础设施数字化,(二)路运一体化车路协同,(三)北斗高精度定位综合应用,(四)基于大数据的路网综合管理,(五)“互联网+”路网综合服务,(六)新一代国家交通控制网等六个方向主题。该通知决定在北京、河北、吉林、江苏、浙江、福建、江西、河南、广东九省市加速智慧公路试点。

 

车路协同刚刚开始,自动驾驶竞争进入下半场

 

        智能交通系统(ITS)发展了很多年,车路协同是ITS的高级阶段,涉及到多方面的技术,如智能车载系统技术、智能路测技术、车路/车车协同信息交互技术(V2X)。

 

车路协同与V2X行业1.png

 

        智能车载系统技术和单车智能技术有很大的交集,但是对路面的感知还需要与路测单元对路面的感知融合起来。

总之,符合完全无人驾驶需要的“智能汽车+智能化道路+车路协同”才刚刚开始。WAYMO和特斯拉等公司的单车智能虽然逐步成熟起来,但是离完全无人驾驶还有相当的距离,自动驾驶竞争正从上半场进入下半场。
 
        自动驾驶的下半场,基础设施将逐步完善,造车的市场空间将逐渐缩小,而从事运营、应用和服务的市场空间将飞速扩大。

 

        自动驾驶的下半场,是汽车底盘控制、传感系统、芯片、动力电池、通讯系统、人工智能、智慧化道路、车路协同、大数据云计算等多种技术能力的综合竞争,跨行业竞争合作成为永恒主题。
 
        自动驾驶的下半场,除了有极强核心竞争力的企业(如Velodyne), 多数中小企业将在巨头之间的竞争中被迫站位。选择可靠的技术路线很重要,因为当年手机智能化前期的各种嵌入式LINUX早已不见踪影;选择合适的产品定位很重要,当年做整机的不如做核心零部件的存活率高;同时关注多行业的发展动向也至关重要,因为自动驾驶产业的复杂度和行业跨度远超想象,随时涌现出行业外的竞争对手。

 

        如前面所说,暂时领先的特斯拉未必能长期领先。强悍的华为、苹果等巨头还没有发力。自动驾驶下半场的竞争,才刚刚开始。


Autonomous driving fuses emerging technologies in many industries, and springs up with combinations of new technologies, solutions and products. Cellular vehicle-to-everything (C-V2X) and cooperative vehicle infrastructure system (CVIS) as the two most valued technologies expectedly boomed last year.

Preparing the report brings us back to the development course of personal digital assistant (PDA) and cellphone industry as we are a research institution experiencing how cellphones become intelligent.

There was a melee between PDA and PDA cellphone before iPhone. Palm was the first one sought after by numerous PDA-fanciers who voluntarily wrote evaluation reports and organized fan exchange clubs for the firm, an echo to today’s Tesla.

Many independent operating system developers and open API-based PDA and cellphone vendors (like Nokia) which were active players in the market, then disappeared. These days some OEMs are either developing operating systems by themselves or open software/hardware interfaces. Emerging car manufacturing forces mushroom as herds of cellphone knockoffs did in those years. History does often rhyme.

Without doubt, car manufacturing differs a lot from cellphone industry for its industry scale and complexity more than ten times larger, so it is not quite right to draw a full analogy between them.

Apple’s APPSTORE model, the built 2.5G/3G/4G wireless data networks and the unified smartphone operating systems (with developers reduced to 2 or 3 from dozens) served as a premise of the subsequent prosperity, application and service expansion of mobile internet. Intelligent vehicle industry is probable to follow suit.

IT firms that foray into car manufacturing initially made fun of automakers by saying they still lived in “primitive society” in applying IT and they followed the beaten track with so low efficiency -- even the most intelligent vehicle still lagged behind smartphone by generations in terms of connectivity.

The truth is that chip computing, network transmission and infrastructure still fall short of basic requirements of automobile industry, and intelligent and connected trends of cars still have not been pushed ahead on a gigantic scale.

Connected car alone is little more than a “top student” with high IQs but low EQs.

Connected cars that can only predict intentions of other road users without communicating with surroundings, just act like a “straight-A student” who is a low EQ intellectual performing well on campus (simple traffic scene) but probably falling flat in society (complicated traffic scene).

Human drivers can communicate with pedestrians by expression in their eyes and gestures when crossing an intersection with no traffic signals, through which both drivers and pedestrians can know who will go first. Automated vehicles are however incapable of intentional communication in spite of sensors.

Traffic environment is quite complex and changeable, especially in China where several traffic scenes co-exist under mixed traffic flow. Current automated vehicles have yet to experience so many scenes to travel safely that commercialization of connected cars is faced with high risks.

If wanting to well know intentions of other traffic participants, connected cars undoubtedly need to communicate with them and surroundings. CVIS and V2X then play a key part. 

Advantages of CVIS

Cooperative vehicle-infrastructure system (CVIS) can acquire vehicle and road information by use of wireless communication and sensor detection technologies, allowing interaction and data sharing between vehicles, between vehicles and infrastructures. The system is a good solution to intelligent communication and coordination between vehicles and infrastructures, making system resources used in a more efficient way, enabling safer road traffic and reducing traffic jams. CVIS is a new trend for intelligent transportation system (ITS). 
 

v2X 1_副本.png

CVIS is an interaction that interprets the intentions of traffic participants with great precision. It not only guesses what the car is going to do, but also perceives the situation accurately, so that it can make correct judgments.

In addition to interactive capabilities, CVIS can substantially improve perception of autonomous vehicles. Vision, radar, LiDAR and other sensors can be mounted on cars and street light poles which evolve into all-in-one signal poles, all-in-one traffic poles, and all-in-one electric alarm poles. The simultaneous perception of cars and road terminals can minimize blind zones and notify the collision out of sight in advance.

Road terminals deliver enough instructions and suffice the decision-making of autonomous vehicles whose complexity will be reduced remarkably and costs will get much lowered because they need not go through all scenarios. Accordingly, autonomous driving will be earlier commercialized than expected.

In addition to the perception and communication facilities at cars and roads, Ministry of Transport of the People's Republic of China (MOT) is planning to transform roads into intelligent ones and suit them for autonomous driving.

In February 2018, Ministry of Transport issued Notice of MOT’s General Office on Accelerating the Next-Generation National Traffic Control Network and Smart Highway Pilots, proposing to focus on traffic control network and smart roads, involving: (1) digitalization of infrastructure, (2) integrated road transport CVIS, (3) synthetic application of Beidou high-precision positioning, (4) integrated management of road network based on big data, (5) “Internet +” road network integrated services, (6) the new generation of national traffic control network. It is decided in the Notice that smart road trials will accelerate to be carried out in provinces including Beijing, Hebei, Jilin, Jiangsu, Zhejiang, Fujian, Jiangxi, Henan, and Guangdong.

CVIS has just emerged, while the race in autonomous driving enters the second half.

Intelligent Transportation Systems (ITS) has been developing for many years. As the advanced stage of ITS, CVIS deals with technologies such as intelligent onboard system technology, intelligent road test technology, and V2X.

V2X 2_副本.png

Intelligent onboard system technology and automotive intelligent technology have great common ground, but the perception of the road surface partly depends on the road test unit.

In short, the “smart cars + intelligent roads + CVIS” eligible for fully autonomous driving has just begun. Despite the automotive intelligence of giants like Waymo and Tesla grows mature, it is still far away from fully autonomous driving. The competition in autonomous driving is ushering in the second half when infrastructure will get improved and the market space for car manufacturing will be narrowing, while the market of operations, applications and services will be developing apace.

Competitiveness will be increasingly shown from such technical capabilities as chassis control, sensing systems, chips, power batteries, communication systems, artificial intelligence, intelligent roads, CVIS, big data, cloud computing, etc., and cross-industry competition and cooperation will be an forever subject.
 
In the second half, most small- and medium-sized enterprises will have to give in to giants (such as Velodyne) with strong core competencies. It is crucial to choose a reliable technical route, because a variety of embedded LINUXs in the early stage of smart phones vanished long ago; it is very important to define the appropriate product positioning, because core parts suppliers outlive vendors of complete machines; it is vital to keep abreast of the developments in the industry since the complexity and scope of the autonomous driving industry is far beyond imagination and new competitors flock to the industry all the time.

As abovementioned, Tesla, who temporarily goes ahead of others, may not be able to take the lead for a long time. Powerful Huawei, Apple and other giants have not yet exerted themselves utterly, which means the second half of autonomous driving contest has just kicked off.

第一章 车路协同和V2X综述
1.1 什么叫车路协同
1.2 自动驾驶需要车路协同
1.3 车路协同是未来ITS的核心
1.4 车路协同的关键技术
1.5 美国车路协同发展现状
1.5.1 美国车路协同和V2X时间表
1.5.2 美国车路协同和V2X测试分布
1.6 欧洲车路协同发展现状
1.6.1 欧洲车路协同三大项目对比
1.6.2 欧洲ITS测试时间表(2014-2018)
1.6.3 欧洲ITS里程碑(2016-2020)
1.7 日本车路协同发展现状
1.7.1 日本车路协同相关机构
1.7.2 日本车路协同包含内容
1.7.3 日本车路协同之VICS
1.7.4 日本车路协同之700MHz ITS
1.8 车路协同应用场景
1.8.1交叉口车路协同技术应用
1.8.2危险路段车路协同技术应用
1.9  国内第一个城市级车路协同平台进入全面实施阶段

第二章 V2X与DSRC
2.1 汽车通信的主要技术
2.2 V2X定义
2.3 为什么需要V2X
2.4 V2X使用案例
2.5 V2X的服务
2.6 V2X两大标准
2.7 V2X通信体系结构
2.8 各国政府对V2X产业的推动
2.9 中国第一个V2X应用层团体标准
2.10 V2X的发展阶段
2.11 全球Cellular Modem出货量预计
2.12 V2X的频段
2.13 DSRC定义
2.14 C-V2X与DSRC对比
2.15 DSRC的基站需求

第三章 C-V2X
3.1 C-V2X定义
3.2 C-V2X在自动驾驶中应用的时间线
3.3 C-V2X相关标准推进情况
3.3.1 3GPP V2X 标准进展
3.3.2 5GAA对C-V2X(V2V/V2I)的商用部署时间表
3.3.3 C-V2X技术试验及商用推进计划
3.4 C-V2X产业现状
3.5 C-V2X芯片进展
3.6 国内C-V2X进展
3.7 国内C-V2X标准推进进展
3.7.1 国内LTE-V2X标准体系基本完成
3.7.2 国内LTE-V2X标准体系的分工
3.7.3 国内C-V2X测试、示范项目进展和目标
3.7.4 IMT-2020( 5G)推进组的C-V2X工作组
3.7.5 中国联通C-V2X部署时间表
3.8 5GAA
3.8.1 5G发展路线
3.8.2 5GAA发展历程
3.8.3 5GAA成员发展情况

第四章 智慧公路
4.1 智慧公路
4.2 智慧公路试点的六个方向
4.3 智慧公路发展的三个阶段
4.4 智慧公路的作用
4.5 各地智慧公路建设情况
4.6 智慧公路的技术架构
4.7 智慧公路的监测指标
4.8 智慧公路的设备设施

第五章 国外车路协同和V2X公司研究
5.1 高通
5.1.1 高通V2X动向
5.1.2 全球路测
5.1.3 合作伙伴
5.1.4 5G NR C-V2X
5.2 NXP
5.2.1 NXP与日立合作

5.3 Continental
5.3.1 V2X with M2XPro
5.3.2 V2X上海路测
5.4 Aptiv
5.4.1 V2X解决方案
5.4.2 苏州联合实验室
5.5 Denso
5.5.1 V2X架构
5.6 Sierra Wireless
5.6.1 Sierra Wireless全球运营中心
5.6.2 Sierra Wireless OEM方案
5.7 Telit
5.8 Cohda Wireless
5.8.1 Cohda Wireless V2X解决方案
5.8.2 Cohda在CTS上的V2X部署
5.8.3 Cohda和其他合作伙伴
5.9 Savari
5.9.1 简介
5.9.2 Savari 解决方案
5.10 Kapsch
5.10.1 V2X业务
5.10.2 V2X Roadside ITS Station
5.10.3 V2X OBU
5.10.4 V2X Evaluation Kit
5.10.5 V2X Software
5.11 Arada Systems
5.11.1 DriveOn OEM DSRC Module
5.11.2 Mobile V2X Device
5.11.3 V2X Rearview MIRROR
5.11.4 ROOF V2X Plug-in
5.12 Autotalks
5.12.1 Craton2 EVK
5.12.2 PANGAEA5
5.12.3 SECTON EVK
5.13 U-blox
5.13.1 V2X Chip
5.13.2 U-blox产品定位
5.14 DANLAW
5.14.1 RSU
5.14.2 V2X Antenna
5.14.3 V2X AM Safety Device
5.15 Nokia
5.15.1 V2X解决方案
5.15.2 Nokia的V2X业务进展
5.16 Commsignia
5.16.1 V2X RSU
5.16.2 V2X OBU
5.16.3 V2X Stack


第六章 国内车路协同和V2X公司研究
6.1 华为
6.1.1 V2X产品及合作伙伴
6.1.2 华为V2X动向 6.2 大唐
6.2.1 V2X产品
6.2.2 LIVE DEMO
6.2.3 V2X路测
6.3 阿里巴巴的车路协同布局
6.4 百度
6.4.1 百度车路协同方案
6.5 星云互联
6.5.1 C-DAS协作式驾驶辅助系统
6.5.2 Open VPP开放的第三方应用平台
6.5.3 星云MPP和V-Platoon
6.6 亚勳科技
6.6.1 V2X OBU
6.6.2 V2X RSU
6.6.3 V2X System on Module
6.7 CiDi.ai
6.7.1 V2X相关产品
6.7.2 智能网联驾驶解决方案
6.7.3 交叉路口车路协同管理解决方案
6.7.4 高速公路车路协同解决方案
6.8 金溢科技
6.8.1 金溢科技的车路协同系统
6.8.2 金溢科技的车载终端
6.8.3 金溢科技的路侧设施
6.8.4 金溢科技的车路协同综合应用场景
6.9 华砺智行
6.10 千方科技
6.11 中国信科
6.12 万集科技

1 CVIS & V2X
1.1 What is CVIS?
1.2 Autonomous Driving Requires CVIS
1.3 CVIS Plays a Key Role in Future ITS
1.4 Core Technologies for CVIS
1.5 Progress of CVIS in the United States
1.5.1 Timeline for CVIS & V2X in the United States
1.5.2 Distribution of CVIS & V2X Tests in the United States
1.6 Progress of CVIS in Europe
1.6.1 The Three CVIS Projects in Europe
1.6.2 Timeline for ITS Tests in Europe during 2014-2018
1.6.3 Milestones of ITS in Europe during 2016-2020
1.7 Progress of CVIS in Japan
1.7.1 Institutions Engaged in CVIS in Japan
1.7.2 Contents of CVIS in Japan
1.7.3 VICS of CVIS in Japan
1.7.4 700MHz ITS of CVIS in Japan
1.8 Applied Scenarios of CVIS
1.8.1 CVIS Technologies Applied at Intersections
1.8.2 CVIS Technologies Applied at Critical Sections
1.9 Full Implementation of the First Urban CVIS Platform in China

2 V2X & DSRC
2.1 Key Technologies for Automotive Communications
2.2 Definition of V2X
2.3 Why Is V2X Needed?
2.4 Cases of V2X Applied
2.5 V2X Services
2.6 Two Standards for V2X
2.7 V2X Communication System Structure
2.8 Support for V2X from Governments Worldwide
2.9 China’s First Association Standards for V2X Application Layer
2.10 Development Stages of V2X
2.11 Estimated Shipments of Cellular Modem Worldwide
2.12 Frequency Band of V2X
2.13 Definition of DSRC
2.14 Comparison between C-V2X and DSRC
2.15 The Demand for Base Stations from DSRC

3 C-V2X
3.1 Definition of C-V2X
3.2 Timeline for C-V2X Applied in Autonomous Driving
3.3 Advances of C-V2X Standards
3.3.1 Advances of 3GPP V2X Standards
3.3.2 Timeline for Commercial Deployment of 5GAA for C-V2X (V2V/V2I)
3.3.3 C-V2X Technology Tests and Commercial Application Program
3.4 Status Quo of C-V2X Industry
3.5 Progress of C-V2X Chip
3.6 Progress of C-V2X in China
3.7 Advances of C-V2X Standards in China
3.7.1 Accomplishment of LTE-V2X Standard System in China
3.7.2 Work Division of LTE-V2X Standard System in China
3.7.3 Progress and Targets of C-V2X Tests and Demo Projects in China
3.7.4 C-V2X Workgroup of IMT-2020 (5G) Promotion Team
3.7.5 China Unicom’s Timeline for C-V2X Deployment
3.8 5GAA
3.8.1 5G Development Roadmap
3.8.2 5GAA Development Course
3.8.3 Development of 5GAA Members

4 Intelligent Road
4.1 Intelligent Road
4.2 Six Directions of Intelligent Road Pilots
4.3 Three Development Stages of Intelligent Road
4.4 Role of Intelligent Road
4.5 Construction of Intelligent Roads
4.6 Technical Architecture of Intelligent Road
4.7 Monitoring Indices of Intelligent Road
4.8 Equipment and Facilities for Intelligent Road

5 Foreign CVIS & V2X Companies
5.1 Qualcomm
5.1.1 Moves in V2X
5.1.2 Road Tests Worldwide
5.1.3 Partners
5.1.4 5G NR C-V2X
5.2 NXP
5.2.1 Collaboration with Hitachi
5.3 Continental
5.3.1 V2X with M2XPro
5.3.2 V2X Road Test in Shanghai
5.4 Aptiv
5.4.1 V2X Solutions
5.4.2 Suzhou United Laboratory
5.5 Denso
5.5.1 V2X Architecture
5.6 Sierra Wireless
5.6.1 Global Operation Centers
5.6.2 OEM Solutions
5.7 Telit
5.8 Cohda Wireless
5.8.1 V2X Solutions
5.8.2 V2X Deployment in CTS
5.8.3 Partners
5.9 Savari
5.9.1 Profile
5.9.2 Savari Solutions
5.10 Kapsch
5.10.1 V2X Business
5.10.2 V2X Roadside ITS Station
5.10.3 V2X OBU
5.10.4 V2X Evaluation Kit
5.10.5 V2X Software
5.11 Arada Systems
5.11.1 DriveOn OEM DSRC Module
5.11.2 Mobile V2X Device
5.11.3 V2X Rearview MIRROR
5.11.4 ROOF V2X Plug-in
5.12 Autotalks
5.12.1 Craton2 EVK
5.12.2 PANGAEA5
5.12.3 SECTON EVK
5.13 U-blox
5.13.1 V2X Chip
5.13.2 Product Positioning
5.14 DANLAW
5.14.1 RSU
5.14.2 V2X Antenna
5.14.3 V2X AM Safety Device
5.15 Nokia
5.15.1 V2X Solutions
5.15.2 Progress of V2X Business
5.16 Commsignia
5.16.1 V2X RSU
5.16.2 V2X OBU
5.16.3 V2X Stack

6 Chinese CVIS & V2X Companies
6.1 Huawei
6.1.1 V2X Products & Partners
6.1.2 Moves in V2X
6.2 China Datang Corporation
6.2.1 V2X Products
6.2.2 LIVE DEMO
6.2.3 V2X Road Test
6.3 Alibaba’s Engagement in CVIS
6.4 Baidu
6.4.1 CVIS Solutions
6.5 Nebula Link
6.5.1 C-DAS Collaborative Driver Assistance System
6.5.2 Open VPP: An Open Third-party Application Platform
6.5.3 Nebula MPP & V-Platoon
6.6 Unex Technology
6.6.1 V2X OBU
6.6.2 V2X RSU
6.6.3 V2X System on Module
6.7 CiDi.ai
6.7.1 V2X-related Products
6.7.2 Intelligent Connected Driving Solutions
6.7.3 Solutions for Management on CVIS at Intersections
6.7.4 Solutions for CVIS on Expressways
6.8 Shenzhen Genvict Technologies
6.8.1 CVIS
6.8.2 Vehicle-mounted Terminals
6.8.3 Roadside Facilities
6.8.4 Applied Scenarios of CVIS
6.9 Huali Technology
6.10 China TransInfo Technology
6.11 China Information Communication Technology (CICT)
6.12 WanJi Technology

    如果这份报告不能满足您的要求,我们还可以为您定制报告,请留言说明您的详细需求。

2005-2010 www.pday.com.cn 版权所有
在线客服系统