留言
报告导航:研究报告制造业汽车
2018-2019 ADAS与自动驾驶产业链报告:毫米波雷达篇
字数:0.0万 页数:190 图表数:0
中文电子版:12000元 中文纸版:9600元 中文(电子+纸)版:12500元
英文电子版:3400美元 英文纸版:3600美元 英文(电子+纸)版:3700美元
编号:ly004 发布日期:2019-03 附件:下载

         中国乘用车毫米波雷达市场从2017年开始明显加速,全年乘用车毫米波雷达出货量接近232万颗,同比增长104.6%。2018年上半年继续保持快速增长,下半年受汽车销量下滑影响,全年增速明显降低。 2018年乘用车毫米波雷达实际出货量达358万颗,同比增长54%。

毫米波雷达行业.png

        根据佐思产研雷达月报的跟踪研究,77GHz雷达与24GHz雷达的出货量差距逐步缩小,最终在2018年12月实现了反超。原来预计77GHz雷达出货量在2020年超过24GHz雷达,实际出货量的超越时间提前到了2019年,超出了预期。

毫米波雷达行业1.png

        超出预期的,还有国产毫米波雷达芯片厂商的鹊起。中国毫米波雷达芯片厂商包括厦门意行、清能华波、上海矽杰微、上海加特兰、南京问智微、杭州岸达等公司。

        2017年加特兰发布了CMOS工艺车载毫米波雷达77GHz收发芯片Yosemite(2T4R)、Yosemite(4T8R)之后,2018年厦门意行发布了24GHz  1发2收雷达芯片SG24TR12和1 发4 收的SG24TR14。

        清能华波源自清华,成立于2010年,研发了采用了CMOS工艺的多通道单片集成77GHz毫米波雷达芯片。上海矽杰微电子前身是上海微技术工业研究院的RFIC部门,2017年完成了A轮8000万人民币融资,2018年完成了A轮增资。

        2019年2月,杭州岸达科技先后发布了16发16收相控阵架构77GHz CMOS毫米波雷达芯片“ADT2001”以及2发2收毫米波雷达芯片“ADT1002”。

        虽然国产雷达芯片已经起步,但是国产雷达芯片企业主要开发射频收发组件,而收发单元在整个雷达系统中功能和成本比例并不很高。国产的雷达芯片还不具备雷达信号处理相关算法的核心功能。

        国外领先芯片企业正向集成化、高精度方向迈进。2018年6月,TI宣布其高集成度超宽带AWR1642 毫米波传感器实现批量生产。AWR1642传感器集成了MCU和DSP,技术优势明显,众多初创公司基于AWR1642研发“4D雷达”(4D=3D位置+1D速度)。

         毫米波雷达新的技术发展方向包括高分辨率成像、79Ghz、CMOS芯片等。

        虽然CMOS工艺的毫米波雷达代表着未来,但CMOS芯片的生态还未完全建立起来。虽然国内毫米波雷达创业公司众多,但也面临技术不够成熟、产品未被验证的问题。对于追求成熟可靠的汽车行业来说,使用多年的硅锗工艺仍然是市场绝对主力,垄断市场多年的博世、大陆、安波福、电装、Veoneer等仍然占据绝大多数市场份额。2018中国乘用车77G LRR Radar前装市场,前三名合计市场份额大约占80%。

毫米波雷达行业3.png

        2018年,国内的毫米波雷达初创企业通过农村包围城市的战略,也获得了快速的发展。

        森思泰克先后获得安防巨头海康威视和北汽广汽关联机构的投资,团队规模发展到300多人,2018年出货10几万台雷达,实现近亿元营收。其主要市场在安防和交通领域,占比约70%。

        在汽车之外的市场打磨产品,同时在汽车市场稳步推进,已经成为不少初创公司的重要发展模式。2018年,森思泰克的雷达产品已经在两款量产乘用车上搭载,2019年将覆盖10款车型。森思泰克2019年的营收目标为2亿元,计划汽车业务占比会达到40%。

        有了海康威视的支持,森思泰克团队规模发展到了300多人,计划在未来两年扩展到1000人。

         2018年,豪米波科技的24Ghz雷达在汽车前装市场的出货量达到2000套。由于已经定点2家车厂5个车型,2019年预计在乘用车前装市场上会有5万套24Ghz雷达出货。

        2018年8月,安智杰宣布完成5000万元A轮融资。安智杰产品应用于汽车、无人机、安防、交通领域。

        不仅国内毫米波雷达企业需要增强雷达信号处理算法能力,在雷达的高精度趋势下,老牌毫米波雷达方案企业也需要增强算法能力。ADI在雷达领域有超过15年的历史。2018年3月,ADI成功收购了德国Symeo公司。Symeo的射频和传感器技术能够实现实时位置检测和距离测量,其信号处理算法将有助于ADI公司为客户提供角精度和分辨率均显著改善的RADAR平台。

视觉与毫米波融合方案

        摄像头与毫米波雷达融合,以实现更安全可靠的前向ADAS功能,已经成为趋势。沃尔沃S90 city safety城市安全系统搭载了安波福提供的RACam系统,该系统融合了一个77GHz毫米波雷达和单目摄像头,安装于车辆挡风玻璃后面,能够实现FCW/AEB/ACC等功能。

        苏州豪米波正在打造雷达摄像头一体机,会在两个传感器融合中采用前融合的技术,实现像素级的融合,从而大大提高产品对环境感知、物体识别的鲁棒性。

        森思泰克也与海康威视的视觉团队一道,开展毫米波雷达与视觉融合技术研发,属于像素级融合。

79GHz雷达

        2017年,行易道科技就联合意法半导体展出了79GHz雷达SAR成像。该方案采用意法半导体的79GHz射频前端芯片,实现高分辨率二维以及三维成像。2019年行易道就会量产79Ghz近程雷达,远距离4D雷达和SAR雷达会在2020年左右量产。

        2018年11月,智波科技正式发布了79GHz毫米波雷达,预计将于2019年年初实现量产。智波科技79GHz高分辨率雷达,可以精确探测目标的距离、速度及角度信息,可对120°、70米范围内的目标进行探测,测距精度达0.05m,同时具备目标识别能力。

        苏州豪米波把77-81GHz毫米波雷达的计划供货时间设在了2019年,预计价格会在200美金以内。

《2018-2019  ADAS与自动驾驶产业链研究》系列报告包含17篇:

20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:模拟与仿真技术篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:分时租赁篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:新兴造车企业篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:高精地图篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:域控制器篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:自动泊车与自主代客泊车篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:车路协同与V2X篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:定位技术篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:处理器篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:激光雷达篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:毫米波雷达篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:汽车视觉篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:乘用车企业篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:系统集成企业篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:商用车自动驾驶篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:低速自动驾驶篇》
20120114.gif《2018-2019 ADAS与自动驾驶产业链报告:L4自动驾驶篇》
 


China’s passenger car radar market gathered pace from 2017, with shipments approaching 2.32 million units in the year, an annualized spurt of 104.6%. The growth trend continued in the first half of 2018 but slowed markedly in the second half due to a decline in automobile sales, leading to a much lower full-year growth in shipments. In 2018, the shipments of passenger car radars reached 3.58 million units in China, up by 54% versus 2017.

 radar 1_副本.png


According to our monthly study of radar, 77GHz radar was narrowing its shipment gap with 24GHz radar in recent years, and came from behind at last in December 2018, two years earlier than we expected.

radar 2_副本.png
  

It also comes as a surprise that Chinese radar chip vendors have sprung up. Main players include Xiamen IMSEMI Technology Co., Ltd., Radaric (Beijing) Technology Co., Ltd., SGR Semiconductors Inc., Calterah Semiconductor Technology (Shanghai) Co., Ltd., Nanjing Citta Microelectronics Co., Ltd. and Hangzhou Andar Technology Co., Ltd.

In 2017, Calterah Semiconductor Technology (Shanghai) Co., Ltd. released Yosemite (2T4R/4T8R), a 77GHz transceiver chip series for CMOS-based automotive radars; in 2018 Xiamen IMSEMI Technology Co., Ltd. rolled out SG24TR12, a 24GHz 1T2R chip and SG24TR14, a 24GHz 1T4R chip.

Radaric (Beijing) Technology Co., Ltd. founded in 2010 with the background of Tsinghua University, designed a CMOS-based 77GHz multi-channel monolithic integrated radar chip. SGR Semiconductors Inc., the successor of RFIC Division under Shanghai Industrial μTechnology Research Institute (SITRI), closed series A funding of RMB80 million in 2017 and finished capital increase in the A-round in 2018.

In February 2019 Hangzhou Andar Technology Co., Ltd. unveiled ADT2001, a phased array architecture-based 16T16R 77GHz radar chip with CMOS process and ADT1002, a 2T2R radar chip.

Though there are radar chip start-ups in China, they commit themselves to the development of RF transceiver modules. Their transceiver units play a small role in the whole radar system and cost not much. China-made radar chips are still not provided with the core function of algorithms about processing radar signals.

Foreign chip leaders are heading towards integration and high precision. In June 2018, Texas Instruments (TI) announced mass production of AWR1642, a highly integrated ultra-wideband radar sensor boasting remarkable technical superiorities as it integrates microcontroller (MCU) and digital signal processor (DSP). Many a start-up uses AWR1642 to develop “4D radar” (4D=3D position + 1D speed).  

High resolution imaging, 79Ghz and CMOS hold the new trends for radars.

CMOS-based chip ecosystem has yet to be built even if a radar with CMOS process will be a typical one in the future. Chinese radar start-ups face challenges of immature technology and unverified products in spite of a large number. For automotive industry with a high demanding on mature and reliable technologies, the long-used silicon germanium process still prevails, so the giants like Bosch, Continental, Aptiv, Denso and Veoneer still rule the roost. In 2018, the top three players in China’s passenger car 77G long-range radar (LRR) OEM market seized a combined 80% share.

In 2018, new radar entrants in China grew up fleetly by resorting to the strategy of “encircling the cities from the rural areas”.

Wuhu Sensortech Intelligent Technology Co., Ltd. was invested by security giant Hikvision and affiliates of BAIC and GAC, with team members growing to over 300 persons. In 2018, Sensortech shipped more than 100,000 radars, generating the revenue of nearly RMB100 million. Security and transportation were main markets using around 70% of Sensortech’s radars.

Quite a few start-ups in China apply the business model: polishing products in other markets whilst forging ahead in automotive market. Sensortech’s radars will be available to 10 models in 2019 after being used in two mass-produced passenger car models in 2018. Sensortech targets to earn RMB200 million in 2019, including 40% from automotive business.

Sensortech also plans to expand its team members to 1,000 in the next two years from the current 300 with the help of Hikvision.

Suzhou Millimeter-wave Technology Co., Ltd. saw shipments of 2,000 sets of 24Ghz automotive radars in OEM market in 2018 before expectedly shipping 50,000 sets for passenger cars in 2019 as it becomes a designated supplier of two automakers for five of their models.

In August 2018, Shenzhen Anngic Technology Co., Ltd. announced the closing of RMB50 million series A rounds. Its products get utilized in automobiles, drones, security, transportation, etc..

The trend for high precision forces not only Chinese radar start-ups but time-honored brands to have stronger competence in radar signal processing algorithms. For instance, Analog Devices, Inc. (ADI), a 15-year-old company managed in March 2018 to acquire Germany-based Symeo whose RF and sensor technologies enable real-time position detection and distance measurement. ADI will leverage Symeo’s signal processing algorithms to offer customers a radar platform with significant improvements in angular accuracy and resolution. 

Vision-radar Fusion Solutions

It grows a trend that vision and radar get fused safer and more reliable ADAS capabilities. Take Volvo S90 city safety system as an example. The Aptiv RACam system for it combines a 77GHz radar and a monocular camera mounted at the top of the windshield to deliver such functions as FCW, AEB and ACC. 

Suzhou Millimeter-wave Technology Co., Ltd. is creating a radar and camera all-in-one. With pre-fusion technology for pixel-level fusion of two sensors, the device becomes much more aware of surroundings and robust in object recognition.

Sensortech and Hikvision team up to develop pixel-level radar and vision fusion technologies.

ADAS and Autonomous Driving Industry Chain Report, 2018-2019 of ResearchInChina covers following 17 reports:
1)Global Autonomous Driving Simulation and Virtual Test Industry Chain Report, 2018-2019
2)China Car Timeshare Rental and Autonomous Driving Report, 2018-2019
3)Report on Emerging Automakers in China, 2018-2019
4)Global and China HD Map Industry Report, 2018-2019
5)Global and China Automotive Domain Control Unit (DCU) Industry Report, 2018-2019
6)Global and China Automated Parking and Autonomous Parking Industry Report, 2018-2019
7)Cooperative Vehicle Infrastructure System (CVIS) and Vehicle to Everything (V2X) Industry Report, 2018-2019
8)Autonomous Driving High-precision Positioning Industry Report, 2018-2019
9)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– Processor
10)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– Automotive Lidar
11)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– Automotive Radar
12)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– Automotive Vision
13)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– Passenger Car Makers
14)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– System Integrators
15)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– Commercial Vehicle Automated Driving
16)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– Low-speed Autonomous Vehicle
17)ADAS and Autonomous Driving Industry Chain Report, 2018-2019– L4 Autonomous Driving

第一章 毫米波雷达技术简介
1.1 雷达定义
1.2 我国的雷达频率划分
1.3 汽车毫米波雷达简介
1.3.1 毫米波雷达与其他传感器比较
1.3.2 汽车毫米波雷达频谱
1.3.3 毫米波雷达工作原理
1.3.4 毫米波雷达分类及调制技术
1.3.5 79GHz毫米波雷达
1.3.6 毫米波雷达的级联
1.4 汽车雷达系统构成
1.4.1 毫米波雷达核心部件——MMIC
1.4.2 毫米波雷达核心部件——天线PCB板
1.4.3 毫米波雷达芯片
1.4.4 中国毫米波雷达芯片厂商
1.4.5 岸达科技发布基于相控阵架构的77GHz CMOS Radar芯片
1.5 毫米波雷达的应用
1.5.1 可以应用到很多行业
1.5.2 毫米波雷达在汽车中的应用
1.5.3 毫米波雷达在不同ADAS功能中的应用
1.5.4 毫米波雷达探测模式和使用案例
1.5.5 毫米波雷达市场的参与者
1.5.6 汽车毫米波雷达代表产品

第二章 汽车毫米波雷达市场分析
2.1 汽车新四化推动车载雷达市场
2.2 中国车载雷达市场发展将快于全球市场
2.3 ADAS装配率上升,促进车载雷达市场发展
2.4 中国乘用车毫米波雷达市场高速增长,2018年增速放缓
2.5  77GHz毫米波雷达开始放量
2.6 中国乘用车市场SRR/LRR和24GHz/77GHz应用现状
2.7 2016-2021乘用车毫米波雷达出货量和市场规模预测(分24G/77G)
2.8 2016-2021年中国车载毫米波市场出货量与市场规模
2.9 2016-2021年全球车载毫米波雷达市场规模
2.10 2017-2018年中国乘用车毫米波雷达搭载率走势
2.11 2017-2018 乘用车新车毫米波雷达渗透率月度走势
2.12 2017-2018 乘用车毫米波雷达各种搭载方案占比及月度走势
2.13 2017-2018乘用车新车不同Radar搭载方案的渗透率走势
2.14 2017-2018乘用车新车不同Radar搭载方案的渗透率走势
2.15 2018搭载毫米波雷达车款销量(分品牌,分车型)
2.16 2018中国乘用车市场77G LRR Radar出货量及供应商市场份额
2.17 日系厂家与ADAS传感器供应商配套关系
2.18 美韩中系厂家与ADAS传感器供应商配套关系
2.19 欧系厂家与ADAS传感器供应商配套关系

第三章 毫米波雷达行业发展趋势
3.1 汽车毫米波雷达发展基本趋势
3.1.1 中国车载毫米波雷达系统技术路线图
3.1.2 RF CMOS半导体工艺
3.1.3 毫米波雷达与摄像头融合
3.1.4 毫米波雷达传感器趋势
3.1.5 毫米波雷达的集成化高精度趋势
3.1.6 单车毫米波雷达数量增多
3.1.7 毫米波雷达逐渐从高端向中低端车型渗透
3.1.8 77GHz毫米波雷达将成为主流
3.2 基于AWR1642 的4D雷达
3.2.1 众多初创公司基于AWR1642研发“4D雷达“
3.2.2 Cognitive technologies
3.2.3 Arbe Robotics
3.2.4 Ainstein
3.3 Metawave下一代感知4D成像雷达
3.3.1 Metawave公司简介
3.3.2 高分辨率雷达warlord及工作原理
3.3.3 毫米波雷达的运行条件及损耗
3.3.4 WARLORD优点及挑战应对办法
3.3.5 活性超材料结构特点
3.3.6 不易受到干扰
3.3.7 WARLORD将探测对象进行分类

第四章 全球毫米波雷达企业研究
4.1 大陆汽车
4.1.1 大陆ADAS产品一览
4.1.2 大陆第五代77GHz毫米波雷达
4.1.3 大陆Radar和Lidar产品客户分布
4.1.4 中国市场大陆毫米波雷达主要应用情况
4.2 博世
4.2.1 博世2018年营收状况
4.2.2 博世的毫米波雷达
4.2.3 博世LRR4雷达和MRR4雷达
4.2.4 博世正在开发第五代77GHz毫米波雷达
4.2.5 博世毫米波雷达主要应用情况
4.3 采埃孚
4.3.1 主动和被动安全技术部
4.3.2 中国市场天合毫米波雷达主要应用情况
4.3.3 天合长距毫米波雷达
4.3.4 天合AC100 中长距毫米波雷达
4.4  安波福
4.4.1  安波福2018财年营收情况
4.4.2  安波福客户分布&终端市场地区分布
4.4.3 安波福ESR毫米波雷达
4.4.4 安波福毫米波雷达+单目摄像头集成系统
4.4.5 中国市场安波福毫米波雷达主要应用情况
4.5 Veoneer
4.5.1 Veoneer主动安全技术
4.5.2 Veoneer 77GHz和 24GHz毫米波雷达
4.5.3 2018年Radar相关动向
4.6 电装
4.6.1 电装2018财年营收情况
4.6.2 电装77GHz毫米波雷达
4.6.3 中国市场电装毫米波雷达主要应用情况
4.6.4 电装自动驾驶投资和研发布局
4.7 法雷奥
4.7.1 法雷奥2017-2018财年经营状况
4.7.2 舒适及驾驶辅助事业部营收情况
4.7.3 法雷奥主要产品
4.8 海拉
4.8.1 海拉经营状况
4.8.2 海拉24GHz毫米波雷达
4.8.3 海拉全新77GHz毫米波雷达
4.8.4 海拉自动驾驶发展路线图
4.8.5 海拉自动驾驶合作伙伴及合作点
4.9 电装天(原富士通天)
4.9.1 电装天短距毫米波雷达
4.10 Oculii
4.10.1 Oculii 4D雷达
4.10.2 产品介绍
4.11 ADI
4.11.1 ADI的高性能成像雷达
4.11.2 ADI的CMOS雷达技术平台及特色产品
4.11.3 基于24GHz雷达演示平台的智能交通方案
4.11.4 收购Symeo
.............................................

第五章 中国毫米波雷达企业研究
5.1 森思泰克
5.1.1 车载毫米波雷达产品
5.1.2 最新进展:已经出货十几万,营收近亿元
5.2 行易道
5.2.1 77/79GHz毫米波雷达
5.2.2 最新进展
5.3 智波科技
5.3.1 24GHz盲点雷达和77GHz防撞雷达
5.3.2 最新动向:发布79GHz毫米波雷达
5.4 木牛科技
5.4.1 车载雷达产品定位和发展动向
5.4.2 主要产品
5.5 纳雷科技
5.5.1 发展历程
5.5.2 主要产品
5.6 莫吉娜
5.6.1 发展历程/业务规划
5.6.2 产品基于TI单芯片方案
5.7 苏州豪米波
5.7.1 发展战略
5.7.2 主要产品
5.7.3 最新进展
5.8 隼眼科技
5.8.1 东南大学-隼眼科技汽车电子技术联合研究中心
5.9 意行半导体
5.9.1 24GHz MMIC
5.9.2 意行半导体发展历程
5.10 安智杰
5.11 凌波微步
5.12 加特兰
5.12.1 加特兰77GHz 雷达收发机芯片及应用
5.13 川速微波
5.13.1 川速微波汽车毫米波雷达
……………………

第六章 级联雷达及在汽车上的应用
6.1 级联雷达简介
6.1.1 级联雷达赋能L2及以上的自动驾驶
6.1.2 级联雷达运行方式: MIMO
6.1.3 级联雷达运行方式:TX波束成型
6.1.4 MIMO VS TX波束成型
6.1.5 级联挑战
6.1.6 级联挑战:LO长度匹配
6.1.7 四芯片级联体系
6.1.8  TI级联雷达
6.1.9 成像雷达系统演示器
6.1.10 实验室测试
6.1.11 检测一辆车门开着的汽车
6.1.12 检测路缘石轮廓
6.1.13 对比-角度估计方法
6.1.14 场地测试1:MIMO雷达
6.1.15 场地测试2:TX波束成型 (行人)
6.1.16 场地测试3:TX波束成型 (车辆)
6.2 级联雷达在汽车车身和底盘的应用
6.2.1 级联雷达在汽车车身和底盘应用 (1)
6.2.2 级联雷达在汽车车身和底盘应用 (2)
6.3 障碍物探测雷达
6.3.1 障碍物探测雷达(1)-应用
6.3.2 障碍物探测雷达(2)-硬件平台
6.3.3 障碍物探测雷达(3)-处理链
6.3.4 障碍物探测雷达(4)-评估
6.4 驾驶员生命体征监测
6.4.1 驾驶员生命体征监测(1)-应用
6.4.2 驾驶员生命体征监测(2)-处理
6.4.3 驾驶员生命体征监测(3)-处理
6.4.4 驾驶员生命体征监测(4)-评估
6.5 车辆乘员检测
6.5.1 车辆乘员检测(1)-应用
6.5.2 车辆乘员检测(2)-处理链
6.5.3 车辆乘员检测(3)-评估
……………………

1 Introduction to Radar Technology
1.1 Definition of Radar
1.2 Radar Band Division in China
1.3 Overview of Automotive Radar
1.3.1 Comparison between Radar and Other Sensors
1.3.2 Automotive Radar Spectrum
1.3.3 Working Principle of Radar
1.3.4 Radar Classification and Modulation Technology
1.3.5 79GHz Radar
1.3.6 Radar Cascade
1.4 Composition of Automotive Radar System
1.4.1 Core Parts for Radar--Monolithic Microwave Integrated Circuit (MMIC)
1.4.2 Core Parts for Radar--Antenna PCB
1.4.3 Radar Chip
1.4.4 Chinese Radar Chip Vendors
1.4.5 Hangzhou Andar Technology Co., Ltd. Launched Phased Array Architecture-based 77GHz CMOS Radar Chip
1.5 Application of Radar
1.5.1 Applicable to Many Industries
1.5.3 Application in Different ADAS Functions
1.5.4 Radar Detection Modes and Application Cases
1.5.5 Radar Competitors
1.5.6 Typical Automotive Radars

2 Automotive Radar Market
2.1 The Four New Automotive Trends (Electrification, Connectivity, Intelligence and Sharing) Drive Automotive Radar Market 
2.2 Chinese Automotive Radar Market will See Faster Growth than Global Market
2.3 Higher Installation of ADAS Boosts Automotive Radar Market
2.4 Growth of Passenger Car Radar Market Slowed in 2018 after a Boom
2.5 77GHz Radars Become Available on the Market
2.6 Application of Passenger Car SRR/LRR and 24GHz/77GHz Radar in China
2.7 Passenger Car Radar Shipments and Market Size (by 24G/77G), 2016-2021E
2.8 Automotive Radar Shipments and Market Size in China, 2016-2021E
2.9 Global Automotive Radar Market Size, 2016-2021E
2.10 Installation Rate of Passenger Car Radar in China, 2017-2018
2.11 Monthly Penetration of Radar for New Passenger Cars, 2017-2018
2.12 Passenger Car Radar Installation Structure and Monthly Growth by Solution, 2017-2018
2.13 Penetration of Radar for New Passenger Cars by Solution, 2017-2018
2.14 Penetration of Radar for New Passenger Cars by Solution, 2017-2018
2.15 Sales of Vehicles with Radars by Brand/Model, 2018
2.16 77G LRR Shipments and Suppliers’ Market Shares in Chinese Passenger Car Market, 2018
2.17 Supply Relationship between Japanese Automakers and ADAS Sensor Suppliers
2.18 Supply Relationship between American, Korean and Chinese Automakers and ADAS Sensor Suppliers
2.19 Supply Relationship between European Automakers and ADAS Sensor Suppliers

3 Radar Industry
3.1 Automotive Radar Industry
3.1.1 China’s Automotive Radar System Technology Roadmap
3.1.2 RF CMOS Semiconductor Process
3.1.3 Radar and Camera Fusion
3.1.4 Trends for Radar Sensor
3.1.5 Integration and High Precision Trends for Radars
3.1.6 The Increasing Number of Radars for a Single Vehicle
3.1.7 Radar is Penetrating from High-class Models into Low/Middle-class Models
3.1.8 77GHz Radar will be the Mainstream
3.2 AWR1642-based 4D Radar
3.2.1 Many a Start-ups Uses AWR1642 to Develop “4D Radar”
3.2.3 Arbe Robotics
3.2.4 Ainstein
3.3 Metawave’s Next-generation 4D Imaging Radar for Perception
3.3.1 Profile of Metawave
3.3.2 WARLORD High Resolution Radar and Its Working Principle
3.3.3 Radar Running Conditions and Loss
3.3.4 WARLORD’s Merits and Solutions to its Demerits
3.3.5 Structural Features of Active Metamaterials
3.3.6 Being Insusceptible to Disturbance
3.3.7 WARLORD Classifies Detection Objects

4 Global Radar Vendors
4.1 Continental
4.1.1 ADAS Products
4.1.2 Fifth-generation 77GHz Radar
4.1.3 Distribution of Customers for Its Radar and LiDAR Products
4.1.4 Continental Radar Applied in Chinese Market
4.2 Bosch
4.2.1 Revenue in 2018
4.2.2 Radar
4.2.3 LRR4 Radar and MRR4 Radar
4.2.4 Ongoing Development of Fifth-generation 77GHzMMW Radar
4.2.5 Applications of Bosch Radar
4.3 ZF TRW
4.3.1 Active and Passive Safety Technology Division
4.3.2 ZF TRW Radar Applied in Chinese Market
4.3.3 Long-range Radar
4.3.4 AC100 Medium and Long-range Radar
4.4 Aptiv
4.4.1 Revenue in 2018
4.4.2 Customer Distribution & Terminal Market Distribution by Region
4.4.3 ESR Radar
4.4.4 Radar + Monocular Camera Integrated System
4.4.5 Aptiv Radar Applied in Chinese Market
4.5 Veoneer
4.5.1 Active Safety Technology
4.5.2 77GHz and 24GHz Radar
4.5.3 Radar Developments in 2018
4.6 Denso
4.6.1 Revenue in 2018
4.6.2 77GHz Radar
4.6.3 Denso Radar Applied in Chinese Market
4.6.4 Autonomous Driving Investment and R&D Layout
4.7 Valeo
4.7.1 Operation in FY2017- FY2018
4.7.2 Revenue of Comfort and Driving Assistance Business Group
4.7.3 Main Products
4.8 Hella
4.8.1 Operation
4.8.2 24GHz Radar
4.8.3 Brand New 77GHz Radar
4.8.4 Autonomous Driving Development Roadmap
4.8.5 Autonomous Driving Partners and Cooperation
4.9 Denso Ten (formerly Fujitsu Ten)
4.9.1 Short-range Radar
4.10 Oculii
4.10.1 Oculii 4D Radar
4.10.2 Products
4.11 ADI
4.11.1 High Performance Imaging Radar
4.11.2 CMOS Radar Technology Platform and Featured Products
4.11.3 Intelligent Transportation Solution Based on 24GHz Radar Demonstration Platform
4.11.4 Acquisition of Symeo

5 Chinese Radar Vendors
5.1 WHST (Wuhu Sensortech)
5.1.1 Automotive Radar
5.1.2 Latest Progress: shipments have reached over 100,000 units, generating the revenue of nearly RMB100 million
5.2 Autoroad
5.2.1 77/79GHzRadar
5.2.2 Latest Progress
5.3 Intibeam
5.3.1 24GHz Blind Spot Radar and 77GHz Anti-collision Radar
5.3.2 Latest Trend: Release of 79GHz Radar
5.4 Muniu Tech
5.4.1 Automotive Radar Positioning and Developments
5.4.2 Main Products
5.5 Nanoradar Science &Technology
5.5.1 Development Course
5.5.2 Main Products
5.6 Morgina
5.6.1 Development Course & Business Planning
5.6.2 Products Based on TI Single Chip Solution
5.7 Suzhou Millimeter-wave Technology Co., Ltd.
5.7.1 Development Strategy
5.7.2 Main Products
5.7.3 Latest Progress
5.8 HawkEye Technology
5.8.1 Southeast University – HawkEye Technology Automotive Electronic Technology Joint Research Center
5.9 IMSEMI
5.9.1 24GHz MMIC
5.9.2 Development Course
5.10 ANNGIC
5.11 Linpowave
5.12 Calterah Semiconductor
5.12.1 77GHz Radar Transceiver Chip and Application
5.13 TransMirowave
5.13.1 Automotive Radar

6 Application of Cascade Radar in Automobile
6.1 Profile of Cascade Radar 
6.1.1 Cascade Radar Empowers L2 Autonomous Driving or Above
6.1.2 Operating Mode of Cascade Radar: MIMO
6.1.3 Operating Mode of Cascade Radar: TX Beamforming
6.1.4 MIMO VS TX Beamforming
6.1.5 Cascade Challenge
6.1.6 Cascade Challenge: LO Length Matching
6.1.7 Four-chip Cascade System
6.1.8 TI Cascade Radar
6.1.9 Imaging Radar System Demonstrator
6.1.10 Laboratory Testing
6.1.11 Detection of a Car with Doors Open
6.1.12 Detection of Kerb Contours
6.1.13 Contrast-Angle Estimation Method
6.1.14 Field Test 1: MIMO Radar
6.1.15 Field Test 2: TX Beamforming (Pedestrian)
6.1.16 Field Test 3: TX Beamforming (Vehicle)
6.2 Cascade Radar in Vehicle Body and Chassis
6.2.1 Cascade Radar in Vehicle Body and Chassis (1)
6.2.2 Cascade Radar in Vehicle Body and Chassis (2)
6.3 Obstacle Detection Radar
6.3.1 Obstacle Detection Radar (1) - Application
6.3.2 Obstacle Detection Radar (2) - Hardware Platform
6.3.3 Obstacle Detection Radar (3) - Processing Chain
6.3.4 Obstacle Detection Radar (4) - Evaluation
6.4 Driver Vital Signs Monitoring
6.4.1 Driver Vital Signs Monitoring (1) - Application
6.4.2 Driver Vital Signs Monitoring (2) - Processing
6.4.3 Driver Vital Signs Monitoring (3) - Processing
6.4.4 Driver Vital Signs Monitoring (4) - Evaluation
6.5 Vehicle Occupant Detection
6.5.1 Vehicle Occupant Detection (1) - Application
6.5.2 Vehicle Occupant Detection (2) - Processing Chain
6.5.3 Vehicle Occupant Detection (3) - Evaluation

    如果这份报告不能满足您的要求,我们还可以为您定制报告,请留言说明您的详细需求。

2005-2010 www.pday.com.cn 版权所有
在线客服系统